References

  1. Dua, D. & Graff, C. (2019). UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences. https://archive.ics.uci.edu.

  2. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Diabetes Dataset. Scikit-learn. Derived from: Efron, B., et al. (2004). Least Angle Regression. The Annals of Statistics, 32(2), 407-499. https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset.

  3. Funnell, A., Shpaner, L., & Petousis, P. (2024). Model Tuner (Version 0.0.28b) [Software]. Zenodo. https://doi.org/10.5281/zenodo.12727322.

  4. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/radiology.143.1.7063747.

  5. Kohavi, R. (1996). Census Income. UCI Machine Learning Repository. https://doi.org/10.24432/C5GP7S.

  6. Pace, R. K., & Barry, R. (1997). Sparse Spatial Autoregressions. Statistics & Probability Letters, 33(3), 291-297. https://doi.org/10.1016/S0167-7152(96)00140-X.

  7. Elkan, C. (2001). The foundations of cost-sensitive learning. International Joint Conference on Artificial Intelligence, 973-978.

  8. Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103-123. https://doi.org/10.1007/s10994-009-5119-5.